International Conference on Desalination and Sustainability

1 - 2 March 2012

in cooperation with

supported by

Jorf Lasfar: The Largest SWRO Desalination Plant in Morocco

Borja Martinez

MOR12-012

INDEX

- 1. Introduction
- 2. The Project
- 3. Design Conditions
- 4. Process & Plant Description
- 5. Design Highlights
- 6. Conclusions

1.- INTRODUCTION

OCP Group

World's leading exporter of phosphate rock and derivative products

Contract

Type of Contract

LSTK

EPC Contractor

CADAGUA (Spain)

Project Milestones

Start of the works

June 2011

Scheduled finish of the works

September 2013

2.- THE PROJECT

OCP's Industrial Complex at Jorf Lasfar (120 km from Casablanca)

MOR12-012

WATER PRODUCTION

Net Capacity

75,800 m³/d (Phase I)

106,800 m³/d (Phase II)

220,000 m³/d (Phase III)

SEAWATER CONDITIONS

- TSS

DESALINATION AND SUSTAINABILITY

30 - 35 mg/l (spikes up to 40)

– TDS

37,000 mg/l

– pH

8.0

Operating Temperature

 $13 - 23^{\circ}C$

3.- DESIGN CONDITIONS

PRODUCT WATER

Use of Product Water

Process & Drinking

Chlorides

< 200 mg/l

- Boron

< 1 mg/l

- LSI

+0.1 - +0.5

 Rest of parameters according to NM 03.7.001 Anne 2006 standard on water quality for human consumption

PROCESS SCHEME

Pre-Treatment

RO & Post-Treatment

MOR12-012

1 - 2 March

DESALINATION AND SUSTAINABILITY

1 - 2 March

4.- PROCESS & PLANT DESCRIPTION

PLOT PLAN

MOR12-012

SEAWATER INTAKE

Type of Intake

Open (existing cooling

seawater channel)

Screening System

Trash Racks

4 x 33.3% / 30 mm

Phase III

Travelling Screens

Seawater Intake Pumps

4 x 33.3% / 3 mm

3 x 50% (Phase I)

DESALINATION AND SUSTAINABILITY

1 - 2 March

4.- PROCESS & PLANT DESCRIPTION

SEAWATER INTAKE

Seawater Intake (3D-view)

PRE-TREATMENT

- DAF System
 - In service <u>only</u> during <u>Harmful Algae Blooms</u> and/or <u>high</u>
 <u>level of hydrocarbons</u>

No. of lines

6 x 20%

Coagulation

Static mixer - FeCl₃

Flocculation

2 stages - Coagulant Aid

- Flotation Cells equipped with sludge surface scrappers
- Recycling system

DESALINATION AND SUSTAINABILITY

1 - 2 March

4.- PROCESS & PLANT DESCRIPTION

DAF Unit (typical cross section)

PRE-TREATMENT

- UF System
 - Required UF Permeate Quality

- TSS

Turbidity

- SDI

Undetectable

< 1 NTU (100% of time)

< 2.5 (95% of time)

< 3 (100% of time)

PRE-TREATMENT

- UF System (cont.)
 - Security Filtration
 - No. of UF Racks
 - Recovery
 - Design Flux (net)

4 x 33.3% self-cleaning filters

20 x 5.5%

> 95%

< 75 lmh

RO SYSTEM

Permeate composition limiting parameters:

• B < 1 mg/l

5 years AMLT

Double Pass Configuration

(2nd partial pass required from 17°C)

RO SYSTEM

RO SYSTEM

- Cartridge Filters
 - Security Filtration

8 x 14.3% (5 µm)

- RO Trains

- 6 x 20% Production units (HPP + ERS + RO Racks 1st & 2nd pass) of 15,300 m³/d each
- 6 x 20% High Pressure Pumps
- 6 x 20% Energy Recovery Systems (pressure exchangers)

RO SYSTEM

RO Building (cross section)

RO SYSTEM

Optimization of:

- Piping routes
- Footprint

1st & 2nd Pass RO Train

POST-TREATMENT

- Remineralization
 - CO₂ dosing
 - Lime dosing
- Product Water Pumping Station
 - 2 x 5,000 m³ Product Water Tanks
 - 3 x 50% Product Water Pumps to OCP and ONEP reservoirs

5.- DESIGN HIGHLIGHTS

FACING UP HARMFUL ALGAE BLOOMS (HAB's)

- HAB's have become a serious problem
- These events imply an increase of <u>TSS</u> and <u>Organic Materia</u>
- Conventional pre-treatments are not capable of facing up to this poor feed water quality
- Plant <u>Availability</u> is compromised
- DAF will reduce up to normal conditions the seawater quality

5.- DESIGN HIGHLIGHTS

PLANT AVAILABILITY

- Continuous uninterrupted production of product water (100% availability)
- Stand-by units for main process systems as:
 - DAF
 - UF trains
 - RO trains for 1st & 2nd pass (HPP+ERD+RO racks)

6.- CONCLUSIONS

- Jorf Lasfar SWRO Plant is the largest plant up to date under construction in Morocco
- The treatment line, and in particular the advanced pre-treatment processes (DAF+UF), leads this plant to become the most advanced SWRO Plant using latest state-of-art in pre-treatments
- The use of highest design standards in combination to high grade materials selection will lead the installation to success for a long time

THANK YOU VERY MUCH FOR YOUR ATTENTION

cadagua

