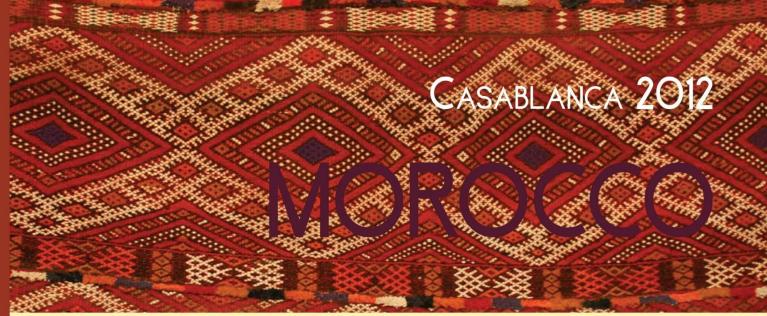
INTERNATIONAL CONFERENCE ON DESALINATION AND SUSTAINABILITY

1 - 2 March 2012



in cooperation with

supported by

The Future of Membranes in Seawater Desalination

Antonio Casañas

MOR12-003

1845-1960 Invention & Membrane focus

- Schönbein Nitrocellulose, Fick diffusion • Ried & Breton: RO demo
- Loeb & Sourirajan assymetric cellulose membrane

History overview 1960s-1980s Membrane & *module diversity*

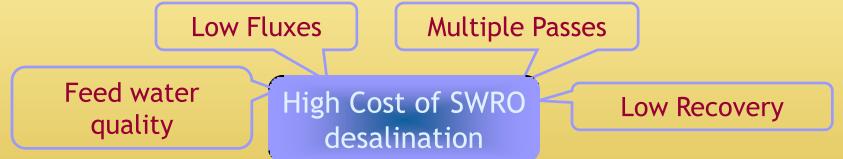
CASABLANCA 2012

- Dow, Toyobo: cellulose acetate HFF modules
 - Dupont aramid HFF modules
- Fluid Systems, North Star (later Dow): polyamide spiral wound

Since 1990s Standardization & up-scaling

1 – 2 March

 Converging to TFC polyamide spiral wound Large market growth Mega plants $(100,000 \text{ m}^3/\text{d})$


1 – 2 March

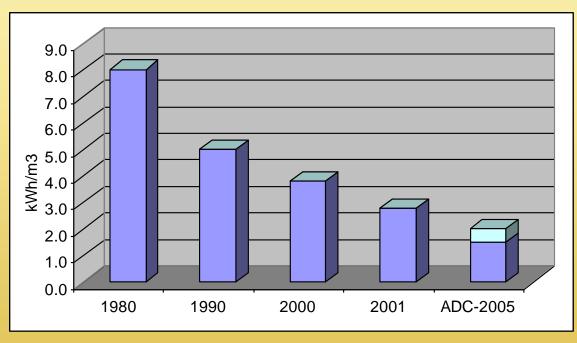
Key Facts in Seawater Desalination

 <u>Multiple passes</u> are often still required to reach water quality despite latest improvements in salt rejection – extra capital and energy cost

CASABLANCA 2012

- Low recovery results in extra capital and energy cost. Water needs to be pretreated and pumped back to the sea
- Low flux rates require more vessels, pipings, elements and increase the capital cost of the system
- <u>Marginal waters</u> use increases pretreament cost and / or SWRO unit cost

• <u>Energy consumption</u> being single largest factor >30% of water cost, still offers tremendous cost reduction potential

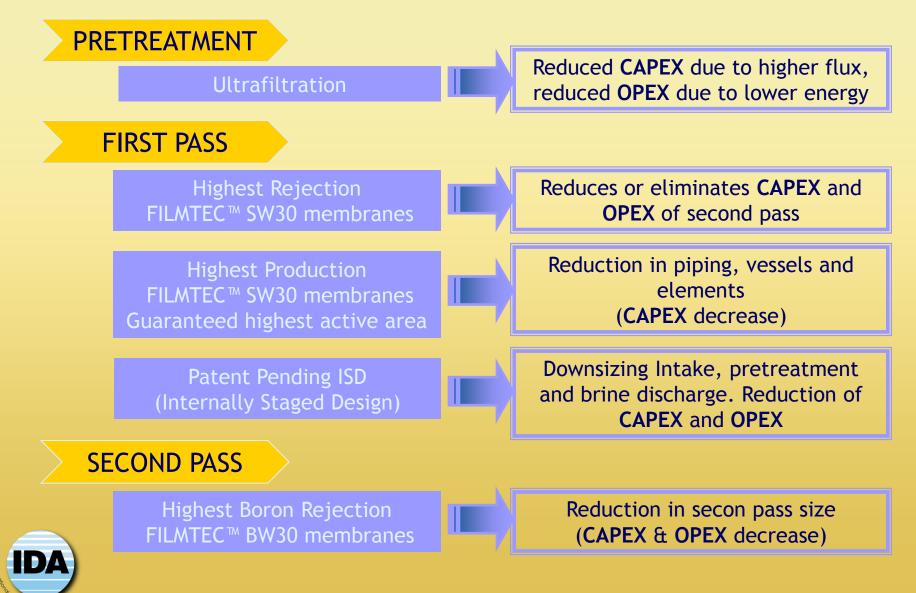

The challe Second 2012

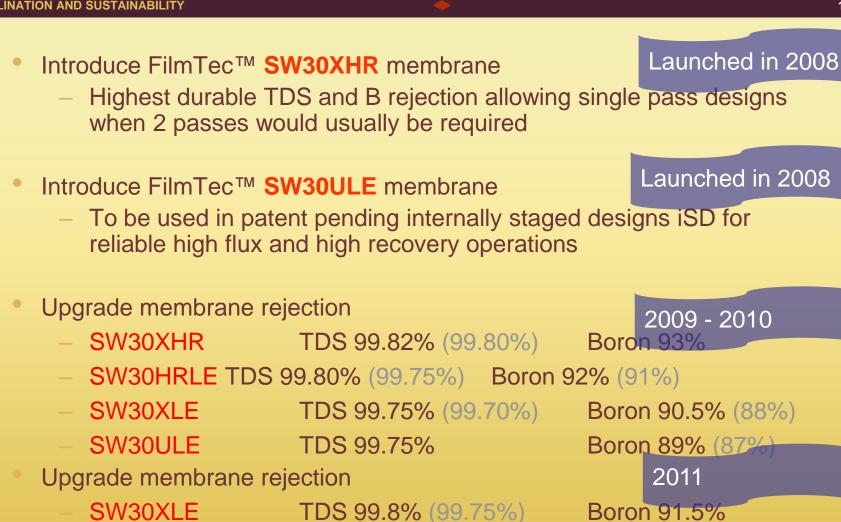
DESALINATION AND SUSTAINABILITY

1 – 2 March

Can we make seawater desalination more widely affordable ?

Can we produce higher purity water at lower cost?


Note:


- 1. Energy consumption related only to the RO process.
 - Average values for standard locations according to ASTM.

rce: Affordable Desalination Collaboration

- SW30XLE (90.5%)

ASABLANCA 2002 ON ERVIEW

* In brackets: previous values of rejection

1 – 2 March

Novel element construction

- 440 square foot design with wide spacer (28 mil)
 - Highest active area with widest spacer
 - Low delta p, low capital footprint
 - On all membrane chemistries
 - SW30XHR-440i
 - SW30HRLE-440i
 - SW30XLE-440i
 - SW30ULE-440i

Launched in 2009

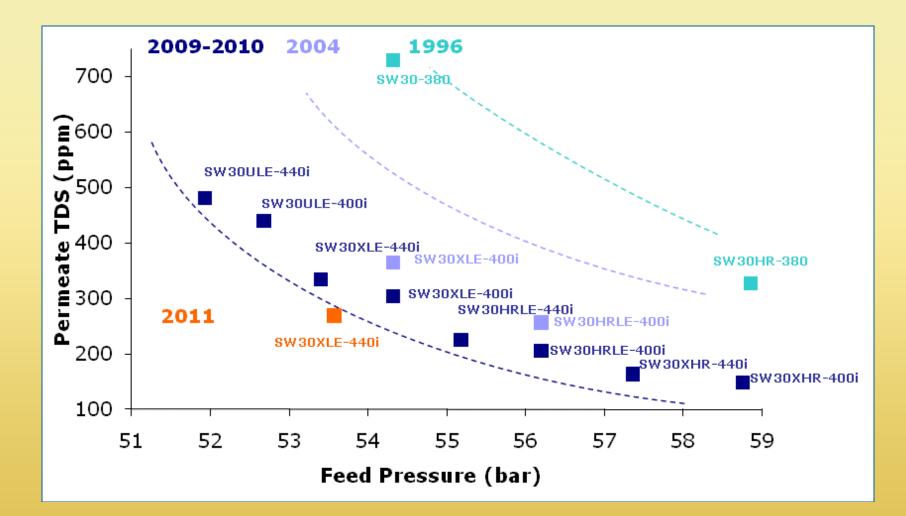
- **34 mil spacer** with highest active area (370 sq ft)
 - Low fouling, easy cleaning

1 – 2 March

FURTHER DECREASE IN THE COST OF WATER

2007

SW30XHR-400i: 6,000 gpd, 99.8%, 93% SW30HRLE-400i: 7,500 gpd, 99.75%, 91% SW30ULE-400i: 11,000 gpd, 99.70%, 87%


FILMTEC[™] SW elements with 440 ft² + Rejection Improvement

2009

SW30XHR-440i: 6,600 gpd, 99.82%, 93% SW30HRLE-440i: 8,200 gpd, 99.8%, 92% SW30ULE-440i: 12,000 gpd, 99.7%, 89%

DERVIEW

ACARI ANCA

CASABLANCA 2012 DESALINATION AFE LA MITTECTM PORTFOLIO 2010 – in addition 1-2 March

Second Pass elements

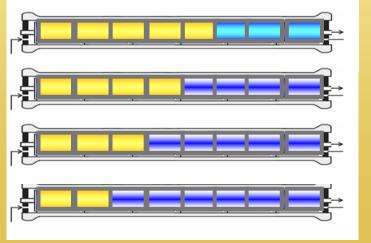
LE-440iFile
keProduction:12,000 gpdSalt Rejection:99.3%Min Salt Rejection:99%

FilmTec[™] LE-440i key reference in Large Desalination plants

	High Boron	Rejection BW element
	BW30HR-440i	
Launched 2009	Production:	33% lower than LE-440i*
	Salt Passage:	50% lower than LE-440i*
	* Calculated at LE-44	Oi standard test conditions

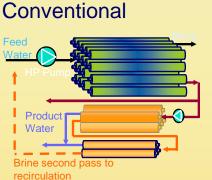
1 – 2 March

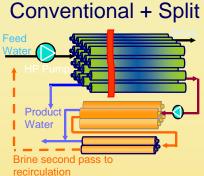
THE PERTH EXAMPLE

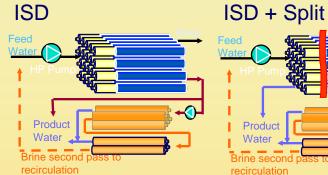


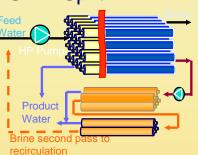
- 2 SW30XHR-400i + 6 SW30ULE-400i (**iSD** + **SPLIT**)
- 3 SW30XHR-400i + 5 SW30ULE-400i (iSD + SPLIT)
- 4 SW30XHR-400i + 4 SW30ULE-400i (**iSD + SPLIT)**
- 5 SW30XHR-400i + 3 SW30HRLE-400i (**iSD + SPLIT**)
- 8 x FILMTEC™ SW30HRLE-400i
- 2 SW30XHR-400i + 5 SW30ULE-400i (**iSD + SPLIT)**
- 2 SW30XHR-400i + 5 SW30ULE-400i (**iSD**)
- 5 SW30XHR-400i + 2 SW30HRLE-400i (**iSD**)
- 7 x **FILMTEC™** SW30HRLE-400i
- 400i (7,500 gpd, 99.8%)
- 400i (6,000 gpd, 99.82%)
- PERTH FIRST PASS DESIGN OPTIONS EVALUATED FILMTEC™ SW30HRLE- FILMTEC™ SW30XHR- FILMTEC™ SV 1000 and 0

CASABLANCA 2012





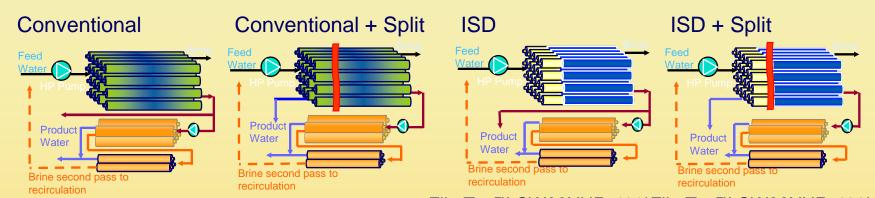

PERTH FIRST PASS – DESIGN OPTIONS



1 – 2 March



FilmTec[™] SW30HRLE-400iFilmTec[™] SW30HRLE-400iFilmTec[™] SW30XHR-400i FilmTec[™] SW30XHR-400i FilmTec[™] SW30XHR-400i FilmTec[™] SW30ULE-400i


CASABLANCA 2012

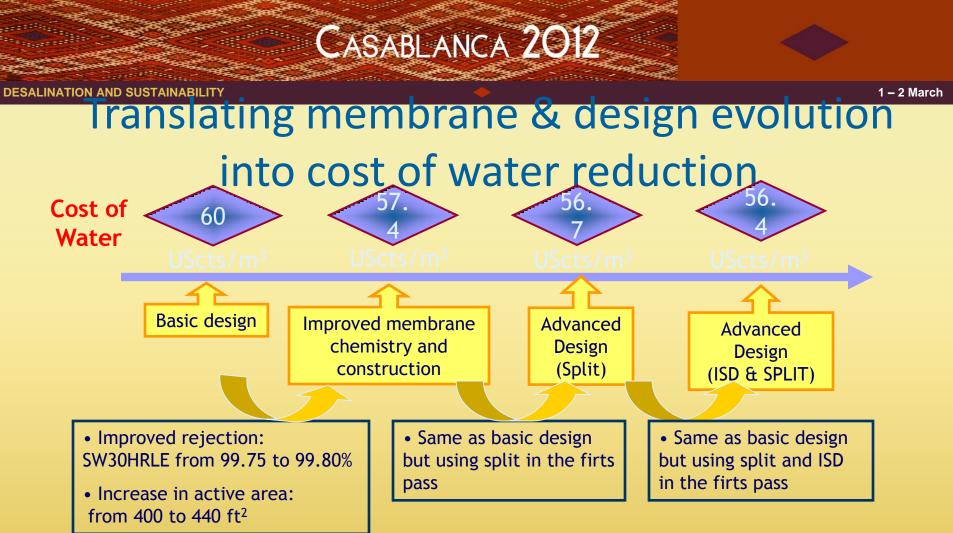
		Conventional	Conventional + Split	ISD	ISD + Split
PASS	Feed Pressure (bar)	54.6	54.7	52.0	52.6
	Permeate (m3h)	7016	6902	7065	6928
	Flux (lmh)	13.5	13.2	13.6	13.3
	Vessels (#)	2000	2000	2000	2000
SECOND PASS	Feed Pressure (bar)	10.8	10.7	10.7	10.8
	Permeate (m3h)	5528	4535	5999	4740
	Flux (lmh)	33.9	33.6	33.8	33.1
	Vessels (#)	570	472	620	500

CASABLANCA 2012

PERTHOFIRST PASS – DESIGN OPTIONS EVALUATED 1-2 March

FilmTec[™] SW30HRLE-400iFilmTec[™] SW30HRLE-400iFilmTec[™] SW30XHR-400i FilmTec[™] SW30XHR-400i FilmTec[™] SW30ULE-400i

Cost (Uscts/m ³)	Conventional	Conventional + Split	ISD	ISD + Split
O&M: Cost of Electricity	32.2	31.1	31.7	30.6
O&M: Labor and Overhead	1.5	1.5	1.5	1.5
O&M: Chemicals	4.3	4.2	4.4	4.2
O&M:Replacement and repair	3	2.9	3.0	2.9
O&M: Insurance	0.4	0.4	0.4	0.4
Subtotal O&M	41.4	40	41	39.6
Amortization	19	18.9	19.1	18.9
Water cost	60.4	58.9	60.15	58.54


1 – 2 March

ENERGY CONSUMPTION kWh/m³ Pre-treatment and Reverse Osmosis

	Pre- treatment	First Pass RO	Second Pass RO	Total
Best Case	0.21 k	2.26	0.23	2.7
Normal	0.21	2.36	0.23	2.8
Worst Case	0.35	2.4	0.35	3.1

- Values given for old membranes
- Normal case for new membranes is 2.7 kWh/m³

Evaluation based on a large SWRO desalination plant (>100,000 m³/day), 41,000 feed TDS, 16-32 °C, Boron in permeate below 0.26 ppm

• Number of pressure vessels not modified. Cost evaluation based on energy savings (OPEX).

1 – 2 March

NEW DIAMETERS OF THE RO ELEMENTS

1 – 2 March

¿What is the benefit of enlarging the diameter in RO elements?

- Decrease in Capital Expenses
- Lower final cost of water

Yun, T.I.; Gabelich, C. J.; Coffey, B.M.; Bergman, R.A.; "Performance and Economic Evaluation of a 16-inch-Diameter Reverse Osmosis Membrane for Surface Water Desalting", AWWA Membrane Conference Proceedings, 2001.

Yun, T.I.; Gabelich, C. J.; Cox, M.R.; Mofidi, A.A.; Lesan, R.; "Reducing Costs for Large-Scale Desalting Plants Using Large-Diameter, Reverse-Osmosis Membranes", AMTA Membrane Conference Proceedings, 2002.

Bartels, C.; Bergman, R.; Hallan, M.; Henthorne, L.; Knappe, P.; Lozier, J.; Metcalfe, P.; Peery, M.; Shelby, I.; "Industry Consortium Analysis of Large Reverse Osmosis and Nanofiltration Element Diameters", Desalination and Water Purification Report No. 114, U.S. Bureau of Reclamation, 2004.

CASABLANCA 2012 16-inch offering

Understanding the economical benefit

	Millions of Dollars (\$)				
	8-inch	16-inch	Savings		
UF Pretreatment	35.2	35.2	0.0		
Seawater RO	70.9	59.6	11.3		
Other Process	10.1	10.1	0.0		
Infrastructure	32.6	29.4	3.2		
Contractor Mark-Up	31.7	28.6	3.1		
Contingency	36.1	32.6	3.5		
Total	216.6	195.6	21.1		

DESALINATION AND SUSTAINABILITY

Fewer, Larger RO Trains Provides Reductions in...

Racks Piping Manifolds Instrumentation Footprint Building

10% Savings

U.S. Dept. of Interior, DWPR Report 114, "Industry Consortium Analysis of Large RO/NF Element Diameters", 2005.

16-inch offering

CASABLANCA 2012

FILMTEC[™] 16-inch Comparison to Standard 8-inch:

Same materials

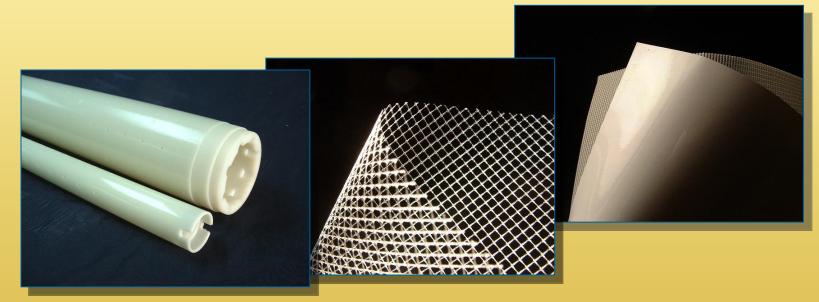
DESALINATION AND SUSTAINABILITY

- Same rejection
- Same feed pressure
- Same pressure drop

• 4.3-times increase in active area and permeate flow

Membrane	Diameter	Active Membrane Area ft² (m²)	Permeate Flow gpd (m ³ /d)	Feed Spacer Thickness Inch (mm)	Stabilized Rejection (%)
	8	400(37)	7,500 (28.4)	0 0 0 0 (0 7 1)	99.80
SW30HRLE	16	1725 (160)	32,000 (121)	0.028 (0.71)	

16-inch offering

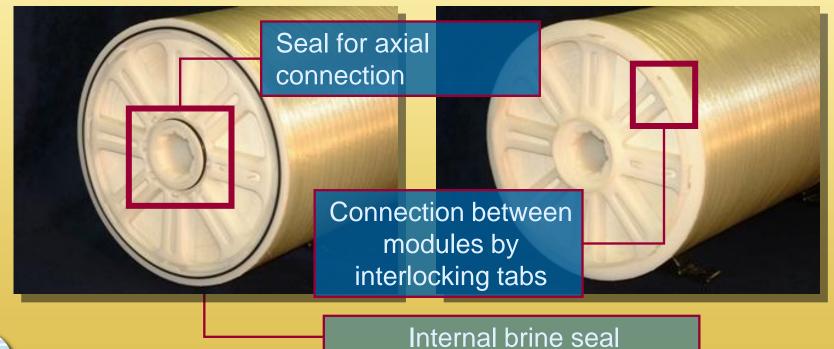

Materials are identical to those used for 8-inch modules

CASABLANCA 2012

- Proven history of reliability in a broad range of applications
- Well established supply chain
- Ease of regulatory approval

AND SUSTAINABILIT

Leveragability of existing fabrication infrastructure



1 – 2 March

Connection between elements

iLEC[™] technology adapted to 16-inch modules

There is no preferential direction for loading and unloading imposed by the brine seal, and the module stack can be pushed or pulled from the most convenient end.

Connection between modules

iLEC[™] technology adapted to 16-inch modules

Number of o-rings is 7 times higher in installations using 8-inch elements with conventional interconnectors

8-inch elements with conventional interconnectors

25 MGD (95,000 m³/d) SW 7,518 elements 15,036 o-rings 16-inch elements with iLEC[™] Interlocking Endcaps

25 MGD (95,000 m³/d) SW

1,904 elements 2,176 o-ring

000000

O-ring ratio is 7:1

1 – 2 March

End Caps

Unique brine seal in the pressure vessel

Pressure vessel adaptor

Manipulation

CASABLANCA 2012

Weight of dry elements:

- 16 inch: 54 kg
- 8 inch: 14 kg

Manual loading of 16-inch elements not possible

Manual loading 8-inch elements

1 – 2 March

Manipulation

Support for elements installation

Elements packaging and transportation

Manipulation

Elements loading Equipment for automatic loading of elements

CASABLANCA 2012

Includes:

- Support to ensure proper alligment of elements
- Hydraulic motor to install and extract elements from the vessel
- Automatic connection between elements

Loading tool attached

to 16-inch pressure vessel

Elements loading

Equipment for automatic loading of elements

Installation in Bedok NEWater Plant, Singapore

CASABLANCA 2012

1 – 2 March

1 – 2 March

ULTRAFILTRATION AS THE NEW PRETREATMENT

FAST ADOPTION OF UF IN SW DESAL

MEMBRANE FILTRATION

- Filtrate quality always achieved
- Lower CAPEX & OPEX RO
- Single stage system
- Less footprint required
- A module can be isolated
- Relatively easy to increase capacity

CONVENTIONAL PRETREATMENT

- Proven and widely used technology
- Production conditioned by quality of Feed
- Two stages potentially needed
- Coagulation/Flocculation migth be required

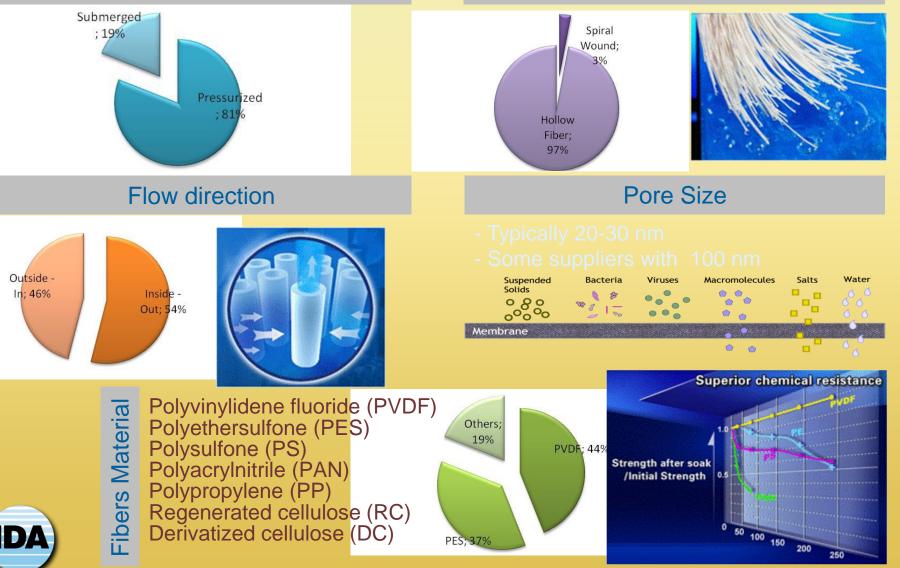
1- UF productivity to justify economical investment Operational Flux high dependance on:

- Fiber pore size
- Porosity
- Maximum allowed pressure
- Fiber length and diameter

2- Full potential of low chemical consumption

- Eliminate use of chlorination
- Avoid coagulation & pH adjustement
- Cleaning chemicals

3- Optimum operational schemes



CASABLANCA 2012 UFTECHNOLOGY OVERVIEW

Pressurized vs Submerged

Hollow Fibers vs Spiral Wound

1 – 2 March

Features:

CASABLANCA 2012

- Minimized Fittings/Materials
- Highly Compact Design
- Modular and Scalable
- "Plug and Play"
- Lower Cost Solution
- Proven Dow UF Modules
- 2860/2880 Adaptable

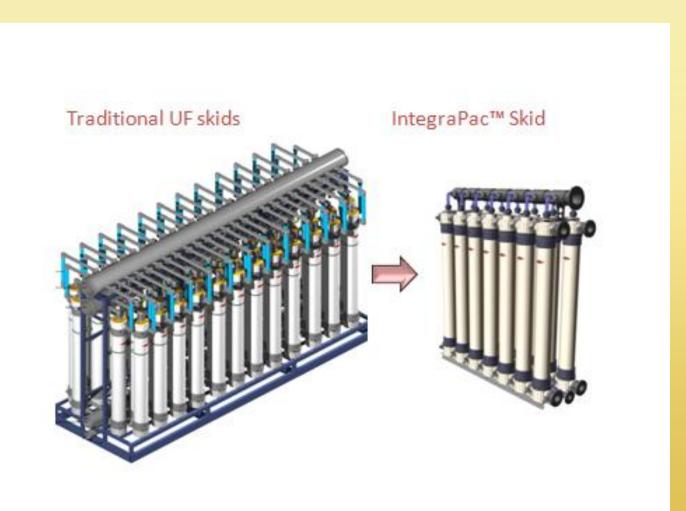
CASABLANCA 2012

1 – 2 March

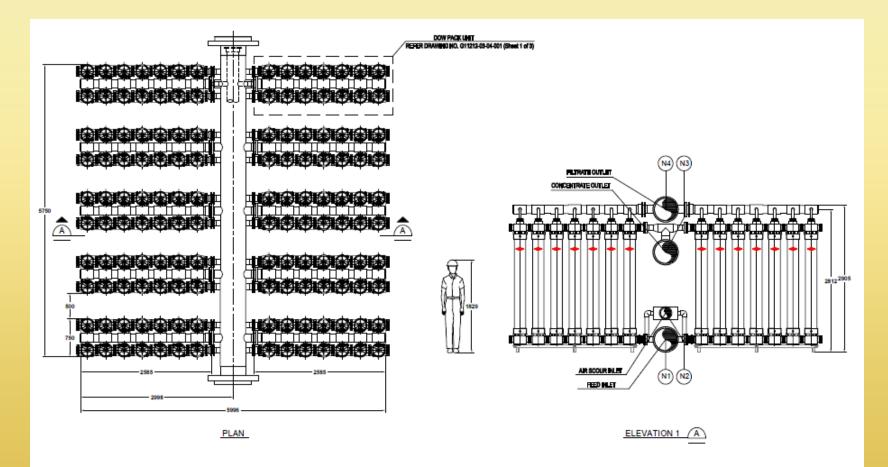
The "IntegraPac" Skid

Features:

- Top port site glasses integrity control
- Module accessibility maintained
- 20 SFX 2880 Modules
- 1540 m² filtration surface
- 2.6 m² footprint
- 2800 m³/day Gross Permeate Flow
- Supports shipment by container



1 – 2 March



"IntegraPac" large projects

REAL CASES USING UF+RO

1 – 2 March

Seawater Pretreatment

CASABLANCA 2012

- Source:
- Capacity:
- Location:
- Running Time: F
- Process:

OEM:

Seawater 25,500 m3/d UF Feed

- Magong, Taiwan
- **ime:** From 2008
 - Open Intake, Disc-Filter & DOWTM UF & RO OEE, China

Purpose: Potable Water

1 – 2 March

Seawater Pretreatment

CASABLANCA 2012

- Source:
- Capacity:
- Location:
- Running Time:
- Process:
- *** OEM:**

Seawater 50,000 m3/d UF Feed Moni, Cyprus From December 2008 Open Intake Prefilter 500 & 100 µm & DOW[™] UF & RO Nirosoft, Israel

Purpose: Potable Water

1 – 2 March

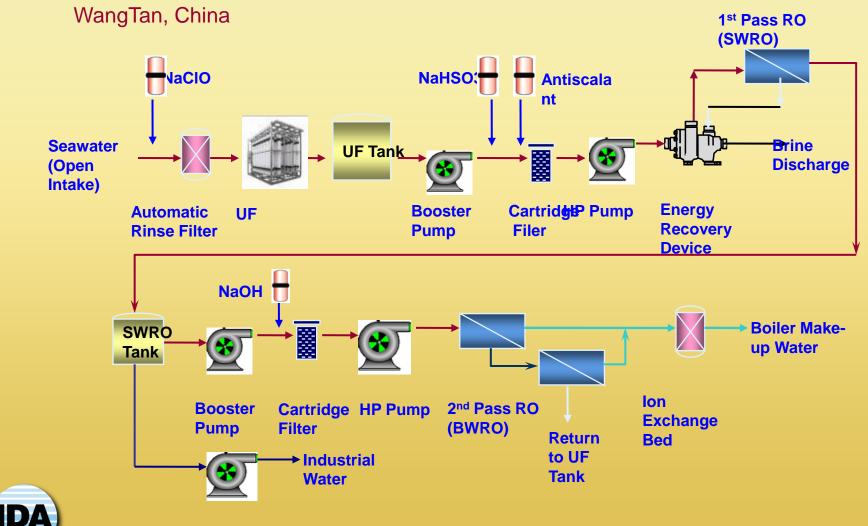
Seawater Pretreatment

CASABLANCA 2012

- **Source:**
- Capacity:
- Location:
- Running Time:
- Process:
 - OEM:

IDA

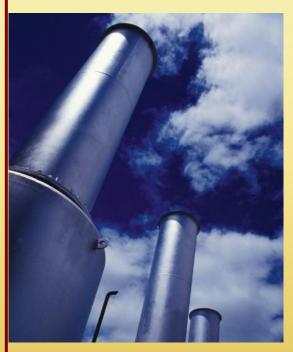
Seawater 28,800 m3/d (UF)


- WangTang, China
- Since 2005
 - Open Intake, Disc-Filter & DOW™ UF & RO OEE, China

Purpose: Boiler Feed

Process Flow

CASABLANCA 2012


Integration of Dow Components Uses Nile Water to Produce High-Purity Water for Power Industry in Egypt (Damietta)

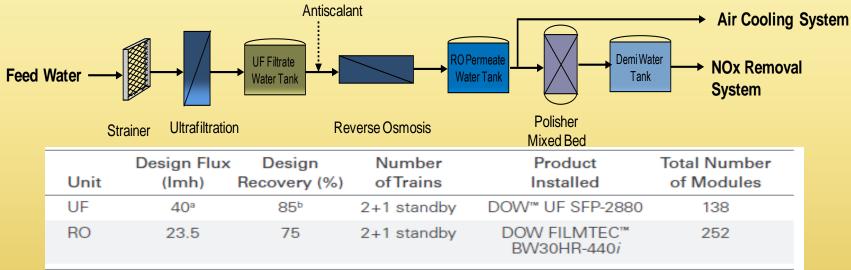
CASABLANCA 2012

- Location: Damietta, Egypt
- Source: River Water (Nile)
- End-user: Cogeneration Power Plant
 - **Capacity:** 3,710 m³/day of RO permeate flow

July 2011

- 3,120 m³/day Mixed Bed product flow
- Start-up:
- Purpose:
 - Feed for NOx Removal system and feed for Evaporate Air Cooler system
- **Constructed by:** PROTECNO Srl (Italy) and EMIT SpA (Italy)
- Main particularities:
 - Full chain of DW&PS's technologies:
 - DOW™ Ultrafiltraion + DOW FILMTEC™ Reverse Osmosis
 - + DOWEX[™] Ion Exchange Resins.

1 – 2 March



1 – 2 March

Integration of Dow Components Uses Nile Water to Produce High-Purity Water for Power Industry in Egypt (Damietta)

System Information

^aUF operating flux of all three UF trains on duty: Instantaneous filtrate flow (L/h) / total active area (m²) ^bUF recovery (related to UF feed) % of all three UF trains on duty: UF filtrate net flow / UF feed flow •100

Unit	Trains	Product Installed	Regenerant	Total volume (L)
Mixed Bed Polisher	2 + 1 standby	DOWEX MARATHON™ C	H_2SO_4	3,750 (H+ form)
		DOWEX MARATHON™ A	NaOH	7,200 (OH ⁻ form)

Integration of Dow Components Uses Nile Water to Produce High-Purity Water for Power Industry in Egypt (Damietta)

3D Layout of the UF + RO + MB System in Damietta

CASABLANCA 2012

DESALINATION AND SUSTAINABILITY

1 – 2 March

Integration of Dow Components Enables High-Purity Water Production for the Power Industry in Egypt (El Shabab)

3D Layout of the UF + RO + MB System in El Shabab

Summary

- Constant pipeline of innovation
- In 2008 major new membrane chemistries were launched, which extended the envelope
- In 2009 element construction improvement to 440 ft² was introduced

CASABLANCA 2012

- In 2009 2011 rejection upgrade of the SW family
- Lower energy consumption
- New designs: ISD & Split partial
- New diameters
- UF as a pretreatment
- New developments in the UF technology

1 – 2 March

Dow Water & Process Solutions

© 2012 International Desalination Association